Efflorescence du phytoplancton à méso-échelle dans l’océan Antarctique stimulée par la fertilisation par le fer
Dans cet article on s’intéresse à l’Océan Antarctique. Il représente le plus grand réservoir de macronutriments inutilisés des eaux de surface, c’est donc un site potentiel de séquestration du CO2 atmosphérique par la fertilisation par le fer des océans.
Les auteurs étudient les facteurs et conditions nécessaires à l’obtention d’une efflorescence dans cette région permettant une séquestration du carbone. Par exemple, il est important d’avoir une disponibilité en silicate, en particulier pendant l'été, car elle peut déterminer le taux de croissance de diatomées. Les conséquences des stocks d’algues sur les grands brouteurs sont aussi étudiées car leurs impacts ne sont pas encore connus.
Des expérimentations in situ SOIREE (Southern Ocean iron-release experiment) ont permis d’aborder ces questions.
Ces expériences ont été effectuées en février 1999 dans l’Océan Antarctique.
Le site de SOIREE a été choisi afin de représenter les propriétés d’une vaste région des eaux des océans HNLC.
Plusieurs techniques in situ on été réalisées dont l’une qui utilise un traceur comme l'hexafluorure de soufre (SF6 ) permettant de suivre les eaux enrichi fer.
SOIREE permet de confirmer qu’il y a une co-limitation du fer et de la lumière sur le site étudié, mais la supplémentation par le fer provoque un bloom de phytoplancton et de production primaire ayant pour conséquence une baisse de CO2.
Méthodes dures à comprendre.
Changes in iron supply to oceanic plankton are thought to have a significant effect on concentrations of atmospheric carbon dioxide by altering rates of carbon sequestration, a theory known as the ‘iron hypothesis’. For this reason, it is important to understand the response of pelagic biota to increased iron supply. Here we report the results of a mesoscale iron fertilization experiment in the polar Southern Ocean, where the potential to sequester iron-elevated algal carbon is probably greatest. Increased iron supply led to elevated phytoplankton biomass and rates of photosynthesis in surface waters, causing a large drawdown of carbon dioxide and macronutrients, and elevated dimethyl sulphide levels after 13 days. This drawdown was mostly due to the proliferation of diatom stocks. But downward export of biogenic carbon was not increased. Moreover, satellite observations of this massive bloom 30 days later, suggest that a sufficient proportion of the added iron was retained in surface waters. Our findings demonstrate that iron supply controls phytoplankton growth and community composition during summer in these polar Southern Ocean waters, but the fate of algal carbon remains unknown and depends on the interplay between the processes controlling export, remineralisation and timescales of water mass subduction.