Human glioma MO54 cells were used to investigate whether radio frequency (RF) field exposure could activate stress response genes. Cells were exposed to continuous wave 1950 MHz or sham conditions for up to 2 h. Specific absorption rates (SARs) were 1,2, and 10 W/kg. For the cell growth experiment, cell numbers were counted at 0-4 days after exposure. Expression of Hsp27 and Hsp70, as well as the level of phosphorylated Hsp27 (78Ser) protein, was determined by Western blotting. It was found that sham exposed and RF exposed cells demonstrated a similar growth pattern up to 4 days after RF field exposure. RF field exposure at both 2 and 10 W/kg did not affect the growth of MO54 cells. In addition, there were no significant differences in protein expression of Hsp27 and Hsp70 between sham exposed and RF exposed cells at a SAR of 1,2, or 10 W/kg for 1 and 2 h. However, exposure to RF field at a SAR of 10 W/kg for 1 and 2 h decreased the protein level of phosphorylated Hsp27 (78Ser) significantly. Our results suggest that although exposure to a 1950 MHz RF field has no effect on cell proliferation and expression of Hsp27 and Hsp70, it may inhibit the phosphorylation of Hsp27 at Serine 78 in MO54 cells.