The increasing use of mobile phones by children and teenagers has raised concerns about their safety. Addressing such concerns is difficult, because no data are available on possible effects from long-term exposure to radiofrequency (RF) fields during the development of the nervous system. Possible morphological and functional changes were evaluated in the central nervous system of young male Wistar rats exposed to 900 MHz mobile phone signal for 2 h/day on 5 days/week. After 5 weeks of exposure at whole-body average specific energy absorption rates of 0.3 or 3.0 W/kg or sham exposure, six rats per group were examined histologically, and the remaining 18 rats per group were subjected to behavioral tests. No degenerative changes, dying neurons, or effects on the leakage of the blood-brain barrier were detected. No group differences were observed in the open-field test, plus maze test or acoustic startle response tests. In the water maze test, however, significantly improved learning (P = 0.012) and memory (P = 0.01) were detected in rats exposed to RF fields. The results do not indicate a serious threat to the developing brain from mobile phone radiation at intensities relevant to human exposure. However, the interesting finding of improved learning and memory warrants further studies.